Nonparametric function estimation under Fourier-oscillating noise
نویسندگان
چکیده
In the popular deconvolution problem, the goal is to estimate a curve f from data that only allow direct estimation of another curve g, the convolution of f and a so-called error density. Unlike the standard assumption in deconvolution, we consider a more general setting where the characteristic function of the error density can have zeros. This problem is important as the characteristic functions of uniform distributions, and more generally of many compactly supported distributions, have some zeros. We propose a new nonparametric deconvolution estimator, prove that its convergence rates are not affected by the zeros if f has a finite left endpoint, and we show rate-adaptivity. We suggest data-driven bandwidth selectors and examine their finite sample behaviour via simulated examples.
منابع مشابه
A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملDeconvolution with Supersmooth Distributions
The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. Optimal global rates of convergence are found under the weighted Lp-loss (1 $ p $ 00). It appears that the optimal rates of convergence are extremely slow for supersmooth error distributions. To overcome the difficulty, we examine how large the noise level can be for d...
متن کاملAsymptotic theory for local time density estimation and nonparametric cointegrating regression
Asymptotic theory is developed for local time density estimation for a general class of functionals of integrated time series. The main result provides a convenient basis for developing a limit theory for nonparametric cointegrating regression and nonstationary autoregression. The treatment directly involves local time estimation and the density function of the processes under consideration, pr...
متن کاملOn pointwise adaptive nonparametric deconvolution
We consider estimating an unknown function f from indirect white noise observations with particular emphasis on the problem of nonparametric deconvolution. Non-parametric estimators that can adapt to unknown smoothness of f are developed. The adaptive estimators are speciied under two sets of assumptions on the kernel of the convolution transform. In particular, kernels having the Fourier trans...
متن کاملGeneralized Likelihood Ratio Statistics and Wilks Phenomenon
The likelihood ratio theory contributes tremendous success to parametric inferences. Yet, there is no general applicable approach for nonparametric inferences based on function estimation. Maximum likelihood ratio test statistics in general may not exist in nonparametric function estimation setting. Even if they exist, they are hard to find and can not be optimal as shown in this paper. We intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010